Образование Солнечной системы

Как и в случае с эволюцией Вселенной, современное естествознание не дает точного описания этого процесса. Но современная наука решительно отвергает допущение о случайном образовании и исключительном характере образования планетных систем. Современная астрономия дает серьезные аргументы в пользу наличия планетных систем у многих звезд. Достоверно известно, что наша Солнечная система образовалась примерно 5 млрд лет назад, причем Солнце – звезда второго (или еще более позднего) поколения. Это означает, что Солнечная система возникла на продуктах жизнедеятельности звезд предыдущего поколения, скапливавшихся в газопылевых облаках.

Солнечная система – Солнце вместе со всей семьей своих планет и прочих объектов (комет, астероидов, лун, пыли и т.д.).

Дальнейший ход событий изложен в целом ряде гипотез, среди которых наибольшей популярностью пользуется гипотеза шведских астрономов X. Альвена и Г. Аррениуса. Они исходили из предположения, что в природе существует единый механизм планетообразования, действие которого объясняется совокупностью различных сил (гравитацией, магнитогидроди-намикой, электромагнетизмом, плазменными процессами) и проявляется и в случае образования планет около звезды, и в случае появления планет-спутников.

Альвен и Аррениус отказались от традиционного допущения об образовании Солнца и планет из одного массива вещества, в одном нераздельном процессе. Они считают, что сначала из газопылевого облака возникло первичное тело – звезда, а затем к нему из другого газопылевого облака, через которое по своей орбите двигалось Солнце, поступил материал для образования вторичных тел. Таким образом, к моменту, когда начали образовываться планеты, центральное тело системы уже существовало.

Для такого утверждения есть достаточные основания. После обобщения результатов многолетних исследований вещества метеоритов, Солнца и Земли были обнаружены отклонения в изотопном составе ряда элементов, содержащихся в метеоритах и земных породах, от изотопного состава тех же элементов на Солнце, что свидетельствует об их различном происхождении. Отсюда следует, что основная масса вещества Солнечной системы поступила из одного газопылевого облака, и из него образовалось Солнце. Значительно меньшая часть вещества, не превышающая 0,15 массы Солнца, с другим изотопным составом поступила из другого газопылевого облака, и она послужила материалом для формирования планет и метеоритов. Если бы масса этого облака была больше, оно аккумулировалось бы не в систему планет, а в звездообразный спутник Солнца.

Чтобы образовать планетную систему, звезда должна обладать рядом признаков:

- мощным магнитным полем, величина которого превышает определенное критическое значение;

- пространство в окрестностях звезды должно быть заполнено разреженной плазмой, создающей солнечный ветер.

Молодое Солнце, предположительно обладавшее значительным магнитным моментом, имело размеры, превышавшие нынешние, но не доходившие до орбиты Меркурия. Его окружала гигантская сверхкорона, представлявшая собой разреженную намагниченную плазму. Как и в наши дни, с поверхности Солнца вырывались протуберанцы, но выбросы тех лет имели протяженность в сотни миллионов километров и достигали орбиты современного Плутона. Сила тока в них достигала нескольких сотен миллионов ампер и больше, что способствовало стягиванию плазмы в узкие каналы. В этих каналах возникали разрывы, пробои, откуда разбегались мощные ударные волны, уплотнявшие плазму на пути их следования. Плазма сверхкороны быстро становилась неоднородной и неравномерной.

Когда молодое Солнце начало свое прохождение через газопылевое облако, мощное гравитационное поле звезды начало притягивать поток газовых и пылевых частиц, послуживших материалом для образования вторичных тел. Поступавшие из внешнего резервуара нейтральные частицы вещества под действием гравитации падали к центральному телу, но при этом они попадали в сверхкорону Солнца. Там они ионизировались и в зависимости от химического состава тормозились на разных расстояниях от центрального тела. Таким образом, с самого начала имела место дифференциация допланетного облака по химическому и весовому составу. В конечном счете, выделились три-четыре концентрические области, плотности частиц, в которых примерно на 7 порядков превышали их плотности в промежутках. Этим объясняется тот факт, что вблизи Солнца располагаются планеты, которые при относительно малых размерах имеют высокую плотность (от 3 до 5,5 г/см3), а планеты-гиганты имеют намного меньшие плотности (1–2 г/см3).

Метеориты и кометы, согласно данной модели, формировались на окраине Солнечной системы, за орбитой Плутона. В отдаленных от Солнца областях существовала слабая плазма.
В ней механизм выпадения вещества еще работал, но струйные потоки, в которых рождаются планеты, образоваться уже не могли. Слипание выпавших там частиц привело к единственно возможному результату – образованию кометных тел. Сегодня уже есть уникальные сведения, подтверждающие данную теорию. Они получены с помощью американских спутников «Вояджеров» при исследовании Юпитера, Сатурна и Урана.

Итак, эволюция Вселенной привела к образованию планет, а на отдельных из них, могли появиться жизнь и разум. Происходит это в местах нахождения разнообразных химических элементов, где протекают процессы их объединения в молекулы, сложность которых может нарастать до очень высоких уровней. Причину, заставляющую атомы объединяться в молекулы, наука знает достаточно хорошо. В основе этих процессов – химические силы, за которыми скрывается одна из фундаментальных сил природы – электромагнитное взаимодействие. Процессы соединения атомов в молекулы широко распространены во Вселенной. В межзвездной среде, где концентрация вещества ничтожно мала, тем не менее обнаруживаются молекулы водорода. Там же встречаются мельчайшие пылинки, в их основе – кристаллики льда или углерода с примесью гидратов различных соединений. Молекулярный водород вместе с гелием образует газопылевые облака. Но самое интересное, с чем столкнулись исследователи, – это присутствие в космосе неожиданно большого разнообразия органических молекул, вплоть до таких сложных, как

молекулы аминокислот. Подсчитано, что в межзвездных облаках существует более 50 видов органических молекул. Еще удивительнее, что органические молекулы находятся во внешних оболочках некоторых не очень горячих звезд и в образованиях, температура которых незначительно отличается от температуры абсолютного нуля. Так что синтез молекул, в том числе и органических, – распространенное и вполне обыденное явление в космосе. Правда, наука пока не может с уверенностью объяснить конкретные пути протекания такого синтеза.

В связи с этим возникает вопрос, способно ли усложнение вещества достигнуть самых высоких уровней вне планет, в межзвездной среде или в оболочках не очень горячих звезд? Иначе говоря, возможна ли там жизнь? Существует ли жизнь на других планетах, возникших у далеких от нас звезд? Эта тема неоднократно обыгрывалась в научно-фантастических произведениях, но современная наука не позволяет дать на этот вопрос ни положительного, ни отрицательного ответа. Пока мы знаем только один вариант жизни в космосе – на Земле, хотя вопрос о том, одиноки ли мы во Вселенной, волнует не только ученых, но и обычных людей.



Оглавление
Структурные уровни организации материи. Мега- и макромир.
Дидактический план
Предисловие
Структурность и системность материи
Микро-, макро- и мегамир
Основные представления о мегамире
Возникновение Вселенной. Теория Большого Взрыва
Модель расширяющейся Вселенной
Образование Солнечной системы
Проблема существования и поиска внеземных цивилизаций
Основные направления поиска внеземных цивилизаций
Современный анализ проблемы внеземных цивилизаций
Солнечная система
Галактики
Планеты Солнечной системы
Внешние планеты Солнечной системы
Планеты земной группы
Сравнительная характеристика планет земной группы
Гипотезы о происхождении планет Солнечной системы
Форма и размеры Земли
Современные представления о строении Земли
Образование Земли
Возраст Земли
Геосферы Земли
Химическая эволюция Земли
Природные ресурсы и их использование
Неисчерпаемые природные ресурсы
Исчерпаемые природные ресурсы
Концепции пространства и времени в современном естествознании
Развитие представлений о пространстве и времени
Теория относительности
Специальная теория относительности
Общая теория относительности
Свойства пространства и времени
Всеобщие свойства пространства и времени
Общие свойства пространства
Общие свойства времени
Специфические (локальные) свойства пространства
Все страницы